Constructing and investigating Morphometric Similarity Networks from structural and diffusion weighted imaging data in a large, longitudinal cohort of patients with Parkinson’s Disease Psychosis.
Using multi-level meta-analytic tools to investigate if a specific profile of impaired cognition and visual function is linked to vulnerability to visual hallucinations in Parkinson’s Disease. The overall aim is to better understand the complex relationship between psychosis and cognitive decline in Parkinson’s patients.
Using graph theoretical approaches and resting fMRI data to better characterise the neural fingerprints of visual hallucinations in Parkinson’s Disease. This includes (i) evaluating group differences in FC in terms of both Von Economo cytoarchitectonic principles and well-established functional connectivity networks, (ii) NBS analyses, and (iii) machine learning approaches to identify patterns of covariance between rsfMRI networks and cognitive and clinical biomarkers of interest (cognitive tasks, MCI tests, cerebrospinal fluid biomarkers such as β-Amyloid, T-Tau and α-Synuclein)
This work focuses on the application of computational models of reinforcement learning (RL) in patients with schizophrenia, in addition to investigating the link between RL task performance and molecular genetic risk for the disorder.
Hallucinations can occur in different sensory modalities, both simultaneously and serially in time. Hallucinatory experiences occurring in multiple sensory systems—multimodal hallucinations (MMHs)—are more prevalent than previously thought and may have greater adverse impact than unimodal ones, but they remain relatively underresearched.